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Abstract Independent verification andquantification of fossil fuel (FF) emissions constitutes a considerable
scientific challenge. By coupling atmospheric observations of CO2 with models of atmospheric transport,
inverse models offer the possibility of overcoming this challenge. However, disaggregating the biospheric
and FF flux components of terrestrial fluxes from CO2 concentration measurements has proven to be difficult,
due to observational and modeling limitations. In this study, we propose a statistical inverse modeling
scheme for disaggregating winter time fluxes on the basis of their unique error covariances and covariates,
where these covariances and covariates are representative of the underlying processes affecting FF and
biospheric fluxes. The application of the method is demonstrated with one synthetic and two real data
prototypical inversions by using in situ CO2 measurements over North America. Inversions are performed
only for the month of January, as predominance of biospheric CO2 signal relative to FF CO2 signal
and observational limitations preclude disaggregation of the fluxes in other months. The quality of
disaggregation is assessed primarily through examination of a posteriori covariance between disaggregated
FF and biospheric fluxes at regional scales. Findings indicate that the proposed method is able to robustly
disaggregate fluxes regionally at monthly temporal resolution with a posteriori cross covariance lower
than 0.15μmolm�2 s�1 between FF and biospheric fluxes. Error covariance models and covariates based
on temporally varying FF inventory data provide a more robust disaggregation over static proxies
(e.g., nightlight intensity and population density). However, the synthetic data case study shows that
disaggregation is possible even in absence of detailed temporally varying FF inventory data.

1. Introduction

The rising concentration of carbon dioxide (CO2) in the atmosphere is the main driver of anthropogenic
climate change. Spatial and temporal variations in global CO2 fluxes leading to this increase can be inferred
using inverse models from atmospheric observations that reflect the combined influence of fossil fuel (FF),
biospheric, and oceanic fluxes. In inverse models, CO2 concentration measurements are combined with
atmospheric transport models driven by observed meteorology to yield estimates of the net exchange of
CO2 at the land and ocean surface [e.g., Gurney et al., 2002; Michalak et al., 2004; Rayner et al., 1999; Tans
et al., 1990].

Recently, atmospheric inverse models have been proposed as a potential tool for independent verification of
inventory-based estimates of FF fluxes or emissions. Such applications currently do not exist at regional (e.g.,
1° by 1° and submonthly scale) to continental scales, due to the limitations associated with observational
coverage [Pacala et al., 2010]. Improvements in terms of increasing in situ [e.g., Sloop and Novakovskaia,
2012] and satellite measurements [e.g., Duren and Miller, 2012] of CO2 concentrations and in situ measure-
ments of radiocarbon isotope 14C [Miller et al., 2012] have been suggested as options toward reducing the
uncertainty associated with continental and regional FF emissions estimates.

A variety of targeted efforts are ongoing for FF flux estimation at local to urban scales. Examples focusing on
urban areas include the Megacities Carbon Project [Duren and Miller, 2012; Gurney et al., 2012; Kort et al., 2012]
and the Indianapolis Flux Experiment (INFLUX) (http://influx.psu.edu/). At local scales (0.2–5 km) [Christen,
2014] the eddy covariance method has been employed to quantify FF emissions upwind from the location
of the measurement tower [Matese et al., 2009; Newman et al., 2008; Velazco et al., 2011]. Estimation of FF
fluxes and identification of its sources have also been attempted by studying upwind and downwind differ-
ences in the CO2 mixing ratios along transects in urban and/or rural areas [George et al., 2007; Gratani and
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Varone, 2005; Idso et al., 2001;Mays et al., 2009; Rice and Bostrom, 2011; Rigby et al., 2008]. Other urban studies
have represented urban areas as boxes [McKain et al., 2012; Kort et al., 2012; Turnbull et al., 2015] with well-
mixed boundary layer [see Newman et al., 2008; Reid and Steyn, 1997; Strong et al., 2011], whose height is
determined by scattering of sound waves [e.g., Zimnoch et al., 2010] or through tracers like radon [e.g.,
Vogel et al., 2013], and fluxes are estimated by accounting for differences in upwind and downwind CO2

concentrations [Lauvaux et al., 2013]. However, all these methods are extremely sensitive to the characteriza-
tion of background concentrations, wind speed, boundary layer, and urban heat island (for details see
Cambaliza et al. [2013]). Moreover, these methods do not scale to national or continental scales and can
typically only be used to validate FF fluxes in urban areas.

Estimation of FF fluxes from inverse methods at continental scales requires disaggregation of biospheric and
FF fluxes which has proven to be difficult due to seasonal variations in the contribution of these fluxes in
determining total surface flux of CO2 [Shiga et al., 2014]. Remote sensing of CO2 has the capability to provide
a large number of observations (for discussion on CO2 observations from space, see Crisp et al. [2004] and
Olsen and Randerson, [2004]) that can reduce the uncertainty of the FF fluxes estimated within an inverse
modeling framework.

However, beyond an increase in observations, methodological improvements are also required in both trans-
port and inverse models to realize the full potential of current and future CO2 observations. In the case of
inverse models, these methodological improvements include designing inverse modeling approaches that
leverage the distinct statistical signatures of FF and biospheric fluxes in order to pinpoint their contributions
to the total surface flux of CO2.

To date, inversion efforts aimed at separating FF emissions from biospheric fluxes have relied on the use of
isotopic tracers of FF CO2 emissions [e.g., Brioude et al., 2012] to identify its contribution to the total CO2 signal
(for details on tracers of FF CO2 see Miller et al. [2012]). However, a large fraction of the variance in FF fluxes
remains unexplained by these tracers [Miller et al., 2012]. Studies that address the estimation of FF emissions
over large spatial regions (compared to urban domes) are rare. In Ray et al. [2014a], the authors developed a
parameterization of FF emission fields based on wavelets, and in Ray et al. [2014b] they use a sparse recon-
struction method to estimate FF emissions using their spatial model in a synthetic data test case. Those
methods were only applied within synthetic data experiments, however, and did not address the need to
isolate FF emissions in the presence of biospheric fluxes. A study by Shiga et al. [2014], although not an
inversion study per se, examined the degree to which concentration signatures specific to FF emissions were
discernable from biospheric fluxes given (1) the current state of the atmospheric monitoring network in
North America, (2) covariations between the seasonalities of variability in fluxes and atmospheric transport,
and (3) limitations associated with contemporary atmospheric transport models. They found that outside
of winter months, space-time patterns specific to FF emissions could not even be conclusively detected in
observations of CO2 from the North American monitoring network.

Here we hypothesize that for times and regions where the atmospheric monitoring network and atmospheric
transport model provide, at a minimum, sufficient information to detect FF emissions, one could use the
unique spatiotemporal features of FF fluxes to isolate them from confounding biospheric fluxes. To explore
this idea, we present a geostatistical inverse modeling methodology that does not rely on FF tracers to sepa-
rate FF and biospheric fluxes. Rather, the approach relies on (1) identifying spatially and temporally explicit
covariates (variables correlated with FF emissions like night lights and population density) that provide some
information about the space-time patterns of FF emissions and (2) isolating the covariance structure of the
portion of the FF emissions patterns that cannot be captured by these covariates. A similar idea is applied
to biospheric fluxes, with covariates and a covariance structure unique to the biospheric component of
the total flux signal. Specifically, we treat easily observed proxies of FF and biospheric CO2 fluxes as contin-
uous predictors to construct a linear model for them; the models are then used within a geostatistical inverse
formulation [e.g.,Michalak et al., 2004; Gourdji et al., 2012; Fang et al., 2014]. The applicability of the proposed
method is demonstrated within the context of one synthetic and two real data inversions at 1° spatial
resolution for North America for the month of January 2008. In the synthetic data case study true fluxes
are known in advance and are used to generate pseudo measurements. These measurements are then used
to estimate fluxes. This allows direct comparison of the spatial distribution and magnitude of the true and
estimated fluxes which is not possible in the real data case studies where true fluxes remain unknown.
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The month of January is selected based on the analysis in Shiga et al. [2014] and the need to focus on a time
when FF emissions are, at a minimum, detected given the limitations of the in situ monitoring network
present in 2008 and atmospheric transport models. In these inversions the covariates and the error
covariance model for biospheric fluxes are prescribed, whereas covariates and error covariance model for
FF fluxes are chosen from a set of candidate covariates and error covariance models.

For more extensive applications, a method such as the one proposed here would need to be coupled with
more widespread observational coverage provided by satellites and in situ measurement network, and
ideally with improved atmospheric transport models.

2. Method for Flux Disaggregation

The process of disaggregating CO2 fluxes is completed in two steps. First, the error covariance model and
covariates for FF fluxes are selected using Bayesian Information Criterion (BIC; see section 2.4) and
Restricted Maximum Likelihood (RML; see section 2.4) within geostatistical inverse modeling framework, after
which in the second step, geostatistical inversions for separating FF and biospheric fluxes (see section 2.5.)
are conducted. The quality of the separation of CO2 fluxes is assessed, by examining a posteriori cross covar-
iances between FF and biospheric fluxes.

2.1. Geostatistical Method for Separating Fossil Fuel and Biospheric Fluxes

A geostatistical formulation of the atmospheric inverse problem has been used to estimate biospheric CO2

fluxes in several earlier studies [e.g., Gourdji et al., 2012;Michalak et al., 2004]. Unlike other Bayesian methods,
this approach does not rely on prescribing prior fluxes; instead, it models the prior as a linear combination of
a set of covariates with weights that are treated as hyperparameters (β) and estimated as part of the inverse
problem. Generally, covariates correlated with the flux are chosen to model the prior mean [e.g., Gourdji et al.,
2008]. However, the approach also allows for the inclusion of covariates that are output from inventories
and/or process-based models [e.g., Fang et al., 2014].

Under the assumption that the model-data mismatch can be modeled as a Gaussian distribution, the objec-
tive function for the standard geostatistical inverse model (GIM) can be written as

Ls;β ¼ z� Hsð ÞTR�1 z� Hsð Þ þ s� Xβð ÞTQ�1 s� Xβð Þ (1)

where z are measurements of CO2 concentrations, H is a Jacobian matrix representing the sensitivity of
measurements to underlying flux, s are the CO2 fluxes, R is the model-data mismatch error covariance matrix,
X is a matrix of covariates of s, β are the coefficients or weights of individual covariates, and Q is the error
covariance matrix describing the deviations of s from Xβ.

In this study, we modify this objective function to separately account for biospheric and FF fluxes. This
modified objective function can be written as

Lsbio;sff ;βbio;βff

¼ z� Hbiosbio þ Hff sff½ �ð ÞTR�1 z� Hbiosbio þ Hff sff½ �ð Þ
þ sbio � Xbioβbioð ÞTQ�1

bio sbio � Xbioβbioð Þ
þ sff � Xffβffð ÞTQ�1

ff
sff � Xffβffð Þ

(2)

where the subscripts bio and ff represent the biospheric and FF component of the terms defined in equation
(1). This modified objective function embodies the assumptions that suitable covariates (in X) and error
covariance models (Q) can be defined to statistically isolate FF and biospheric fluxes. Thus, the covariates
(Xbio, Xff) and error covariance models (Qbio,Qff) in equation (2) play a vital role, as they capture our under-
standing of the processes affecting FF and biospheric flux variability. Hbio and Hff in this study are based
on the same atmospheric transport model but are kept separate to allow for the possibility of modeling sbio
and sff at different spatiotemporal resolutions.

The covariates and error covariance models in sections 2.2 and 2.3 are discussed specifically in the context of
the three inversion case studies presented in this work. Other covariates and error covariance models could
be implemented within equation (2), as needed for other applications.
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2.2. Covariates and Error Covariance Model for Biospheric Fluxes

For the three inversion case studies presented here, the only covariates used for biospheric fluxes in Xbio are
fixed effects that represent a 3-hourly diurnal cycle (see section 3 for details on the resolution of inversions).
These covariates model the mean diurnal variations in the biospheric fluxes, and any spatiotemporal devia-
tions therefrom are captured by the error covariance matrix Qbio. This choice of covariates for biospheric
fluxes was made to focus primarily on evaluating the proposed method's ability to represent FF emissions.

Biospheric fluxes vary relatively smoothly, exhibit spatial autocorrelation, and are largely independent of FF
fluxes. Thus, it is assumed for the inversion case studies that the error covariance for biospheric fluxes can be
modeled through a stationary (for definition of stationarity, see Cressie [1993]) spatiotemporal exponential
covariance model [see Gourdji et al., 2012]. This error covariance model can be written as (for details see
Gourdji et al. [2010] and Yadav and Michalak [2013]

Qbio ¼ σ2 exp
�htemporalbio

ltemporalbio

� �
⊗exp

�hspatialbio

lspatialbio

� �� �
(3)

where σ2 is the variance in space and time, hspatialbio and htemporalbio , are the separation distances between esti-
mation locations of biospheric fluxes in space and time, and ltemporalbio and lspatialbio are the spatial and temporal
correlation range parameters and ⊗ denotes the Kronecker product. The three parameters σ2, ltemporalbio , and
lspatialbio of the spatiotemporal error covariance model are estimated through RML (see section 2.4 for details)

2.3. Covariates and Error Covariance Model for Fossil Fuel Fluxes

To aid in the disaggregation of FF fluxes from the biospheric fluxes, we include covariates that are correlated
with FF fluxes in Xff. There are many easily available/observable proxies that correlate with FF fluxes, and we
use the BIC [Schwarz, 1978] to select the smallest, most informative subset from a set of candidate proxies.
This is described in detail in section 2.4. For the inversions presented here, the superset of candidate covariates
of FFfluxes includes (1) annual radiance intensity of night lights at 3 kmspatial resolution for 2008 [Elvidge et al.,
1997], (2) annual population density per square kilometer at ~ 5 km spatial resolution for 2008 [CIESIN, 2012],
(3) % built-up area at ~10 km spatial resolution for 2002 [Miteva, 2002], (4) percent urban area for 2009
[Schneider et al., 2009], and (5) a mixed, scaled estimate of FF fluxes of North America for 2008 from Vulcan
and ODIAC (see section 3.1). All variables are aggregated up to the 1° spatial resolution for inversions.

Any spatiotemporal deviations from Xffβff are assumed to be independent and can thus be represented
through a diagonal error covariance matrix with a different variance for each spatial location (i.e., each grid
cell). This is consistent with the fact that FF fluxes estimated at 1° spatial resolution tend to be spatially loca-
lized (see section 3 for details on the spatial resolution of inversions).

The FF error covariance is thus defined here as

Qff ¼ a

k1 0 0

0 ⋱ 0

0 0 kr

264
375þ b

1 0 0

0 ⋱ 0

0 0 1

264
375

0B@
1CA (4)

where a and b are constant variance components for all time periods for r spatial locations at which FF fluxes
are estimated, and k1,…, kr define additional error variance that is spatially independent (i.e., the variance at
each estimation location can be different).

We assume that the ki values in equation (4) can be prescribed based on geospatial data sets related to FF
fluxes, 10 of which are considered here. The first nine are the mean, maximum, and variance of night lights,
population density, and percent built-up area within each 1° × 1° grid cell in the inversion domain. These can
be defined because all three of these data sets are available at higher resolution than the resolution of the
inversions. The final data set considered is a FF inventory (Vulcan combined with ODIAC; see section 4) at
the resolution of the inversions (see section 3 for details on the resolution of inversions), with this final dataset
being temporally, as well as spatially, variable.

BIC is used to identify those geospatial data sets that most represent actual error covariances which are then
used to populate the ki values (see section 2.3). The primary objective is to obtain an optimal model that, in
combination with covariates in Xff, can explain the spatiotemporal variability of FF fluxes.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025642

YADAV ET AL. ISOLATING FOSSIL FUEL EMISSIONS 12,493

 21698996, 2016, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2016JD

025642, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.4. Covariate and Covariance Selection From Bayesian Information Criterion

BIC evaluates the trade-off between the explanatory power of a model and its complexity. It is used for select-
ing an appropriate set of covariates from a superset of candidate covariates of the dependent variable. The
set of covariates that forms the model with the lowest BIC value optimally balances explanatory power with
model complexity. In this study, BIC is used to select covariates for both Xff and Qff. BIC is defined as

BIC ¼ RSSþ ln Ψj j|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
log likelihood

þ p ln nð Þ|fflfflffl{zfflfflffl}
penalty term

(5)

where | | denotes the matrix determinant, p are the number of parameters or covariates in the model, and n is
the number of observations.

RSS in equation (5) is defined as

RSS ¼ zT Ψ�1 �Ψ�1Ω ΩTΨ�1Ω
� ��1

ΩTΨ�1
	 


z
h i

(6)

where

Ψ ¼ Hbio Hff½ � Qbio 0

0 Qff

� �
Hbio Hff½ �T þ R (7)

and

Ω ¼ Hbio Hff½ � Xbio

Xff

� �
(8)

Note that BIC (equation (5)) depends on the covariance parameters in Qff (i.e., a and b), Qbio (σ
2, ltemporalbio, and

lspatialbio) and R σ2R
� �

, which themselves depend on the covariates used to define Xff andQff. The covariates and

covariance parameters must therefore be adjusted in tandem to identify the overall best statistical model. We
proceed as follows:

1. Pick one of the 10 covariates considered for populating the FF error covariance model (Qff, equation (4)).
2. Use the discrete optimization branch and bound algorithm [see Yadav et al., 2013] and RML (for details see

Kitanidis [1995]) to select covariates (Xff) and covariance parameters of Qff, Qbio, and R (for estimates of
covariance parameters of Qff, Qbio see Tables A1, A3a, and A3b) to simultaneously minimize BIC and the
log likelihood of the expected value of the measurements (z) with respect to a choice of a covariance
model of Qff in step 1. This optimization procedure gives a set of covariates and covariance parameters
associated with FF error covariance chosen in step 1.

3. Repeat steps 1 and 2 for each of the 10 different Qff, i.e., FF error covariance models described in
section 2.3

4. Compare BIC obtained in step 2 for all the 10 FF error covariance models and select the error covariance
model that results in the minimum BIC.

2.5. Flux and A Posteriori Covariance Estimation

The FF and biospheric fluxes are estimated by solving linear system of equations (9) and (10) [e.g., Michalak
et al., 2004], following which a posteriori covariance can be obtained from equation (11).

Ψ Ω
ΩT 0

� �
Λbio Λff½ �T

M

" #
¼

Hbio Hff½ �
Qbio 0

0 Qff

" #
Xbio

Xff

" #T

2666664

3777775 (9)

ŝbio
ŝff

� �
¼ Λbio Λff½ �z (10)

V ¼� Xbio

Xf f

� �
Mþ Qbio 0

0 Qff

� �
� Qbio 0

0 Qff

� �
Hbio Hff½ �T Λbio Λff½ �T (11)

In equations (9)–(11), V is the a posteriori covariance of the estimated fluxes ŝbio and ŝff , Λbio, and Λff are the
matrix of weights, M are Lagrange multipliers, and the remaining terms are as defined earlier. The posterior
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covariance matrix V in equation (11) can be subdivided to represent the posterior covariances of the bio-
spheric and FF fluxes, as well as their cross covariance, and can be given as

V ¼ Vbio VT
ff ;bio

V ff ;bio V ff

" #
(12)

where Vbio, Vff represent posterior covariance of estimated biospheric and FF fluxes and Vff,bio represent their
cross covariance.

2.6. Nonnegativity Constraints on Fossil Fuel Fluxes

The joint inversion can result in negative FF fluxes, and therefore, a nonnegativity constraint is imposed on

the FF fluxes obtained from equation (10). No constraints are imposed on ŝbio, bβbio, and bβ ff as they admit both
negative and positive values. There are several methods for imposing nonnegativity constraints on ŝff [e.g.,
Miller et al., 2014]. However, some of these methods do not scale to large dimensional inverse problems,
while others make the problem nonlinear. Consequently, we used Lagrange multipliers as a mechanism
for implementing the nonnegativity constraints. This method consists of rewriting the original objective func-
tion given in equation (2) into a Lagrangian formulation [e.g., Michalak and Kitanidis, 2003]:

h Lsbio ;sff ;βbio;βff; λ
� � ¼ f Lsbio;sff ;βbio;βff

� ��Xt

i¼1

λi δi sffð Þ � bi½ � (13)

where t values are the total number of active constraints and λ= (λ1, λ1, …, λp) are the Lagrange multipliers
and Lsbio;sff ;βbio;βff must satisfy the constraints such that δi(sff) ≥bi. This involves setting the derivative of the
Lagrange function equal to zero by satisfying the first order Kuhn-Tucker conditions (for additional details,
see Gill et al. [1981]). Note that nonnegativity constraints are imposed on FF fluxes obtained from an uncon-
strained inversion that utilizes the covariance model and covariates selected from the procedure described in
section 2.4. While imposing nonnegativity ŝbio, ŝff , bβbio, and bβ ff are updated in each iteration, the a posteriori
covariance is not updated and the uncertainty reported in section 4 is obtained from the first inversion where
nonnegativity constraints are not imposed.

3. Inversion Case Studies

Three inversion case studies are used to evaluate the proposed approach. All involve estimating biospheric
fluxes at 3-hourly temporal resolution to avoid temporal aggregation errors (for details see Gourdji et al.
[2010]), while FF fluxes are estimated at 8 day temporal resolution, in part due to the computational cost
of imposing nonnegativity constraints. Spatially, both FF and biospheric fluxes are estimated at 1° by 1° for
the land area between 10°N to 70°N and 50°W to 170°W. All inversions are conducted for January 2008.

3.1. Data for Inversion Case Studies

The sensitivity matrix (H) of the CO2 observations to surface fluxes for inversions was obtained from Weather
Research Forecasting model-Stochastic Time-Inverted Lagrangian Transport (STILT) [Lin et al., 2003] model
that has been utilized in many studies for estimating fluxes (for details see Gourdji et al. [2012] and Shiga
et al. [2014]).

For two real data case studies continuous measurements of atmospheric CO2 concentrations from 29 in situ
towers across North America were used. These 29 towers include (1) nine towers operated by the Global
Monitoring Division of NOAA's Earth Research Laboratory [Andrews et al., 2015], located in Park Falls,
Wisconsin (LEF); Moody, Texas (WKT); West Branch, Iowa (WBI); Boulder Atmospheric Observatory,
Colorado (BAO); Argyle, Maine (AMT); South Carolina Tower, South Carolina (SCT), and Walnut Grove,
California (WGC); Shenandoah National Park, Virginia (SNP); and Barrow, Alaska (BRW); (2) seven towers sup-
ported by the Mid-Continental Intensive project, located in Canaan Valley, West Virginia (CVA); Missouri
Ozarks, Missouri (OZA) [Stephens et al., 2011]; Kewanee, Illinois (KEW); Centerville, Iowa (CEN); Mead,
Nebraska (MEA); Round Lake, Missouri (ROL); and Galesville, Wisconsin (GAL) [Richardson et al., 2012]; (3) three
towers within the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (RACCOON)
[Stephens et al., 2011], located in Storm Peak Lab, Colorado (SPL); Niwot Ridge, Colorado (NWR); and
Hidden Peak Snowbird, Utah (HDP); (4) seven towers supported by Environment Canada, located in
Fraserdale, Ontario (FRD); Egbert, Ontario (EGB); Candle Lake, Saskatcheway (CDL); East Trout Lake,
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Saskatchewan (ETL); Sable Island, Nova Scotia (SBL); Lac LaBiche, Alberta (LLB); and Chibougamau, Quebec
(CHI); (5) five Oregon towers operated by Oregon State University [Göckede et al., 2010], including the Fir
(FIR), Metolius (MET), Yaquina Head (YAH), Mary's Peak (MAP), and Burns Old (NGB); and (6) four additional
towers, located at the Harvard Forest, Massachusetts (HFM) [Urbanski et al., 2007]; Morgan Monroe State
Forest, Illinois (MMS) [Dragoni et al., 2007; Schmid et al., 2000]; Southern Great Plains, Oklahoma (SGP); and
La Jolla, CA (LJA) [Keeling et al., 2005].

We use ~2400 3 hr average CO2 observations that have been filtered and processed as in Fang et al. [2014] for
use in inverse modeling applications by removing anomalous data due to low-quality flags, extreme outliers,
large deviations (±30 ppm) from the background, possible transport model concerns, and ocean sensitivity.
Additionally, we remove the influence of boundary conditions from the atmospheric measurements as in
Fang et al. [2014]. The names, locations, and measurement times of the CO2 observations are given in
Table A1.

In the synthetic data case study, the “ground truth” for biospheric fluxes was obtained from the Carnegie
Ames Stanford Approach (CASA) model as configured for the Global Fire Emissions Database (GFED) v2 pro-
ject [Randerson et al., 1997; van der Werf et al., 2006]. These simulated fluxes were obtained from model runs
submitted to the North American Carbon Program Regional Interim Synthesis (for details see Huntzinger et al.
[2012]). The estimates for FF fluxes were obtained from the Vulcan (USA; 2002) and ODIAC (Canada, Mexico
and Alaska; 2007) inventories [Gurney et al., 2009; Oda and Maksyutov, 2011]. These were then scaled to 2008
to account for changes in the FF fluxes from those reported in these inventories. Since the CASA-GFED v2 bio-
spheric fluxes were available only at monthly scale they were downscaled to 3-hourly temporal resolution by
using net shortwave radiation and near-surface temperature data from the NASA Global Land Data
Assimilation System (GLDAS) [Olsen and Randerson, 2004; Rodell et al., 2004]. Finally, synthetic observations
were generated by adding (1) the estimates of FF fluxes from Vulcan and ODIAC and (2) biospheric fluxes
from CASA-GFED v2 model at 3-hourly resolution and transporting them forward (e.g., Hbio Hff½ �
sff þ sbioð Þ) through sensitivity matrix Hbio Hff½ �.
3.2. Real Data Case Studies

The real data case studies were designed to test the influence of a FF inventory in explaining variations in
inferred FF fluxes and disaggregating them from biospheric fluxes. This is achieved by examining a posteriori
cross covariances and results of the model selection. Thus, in one case study, the model selection scheme
(see section 2.4) is allowed to select covariates and an error covariancemodel for FF fluxes from the full super-
set given in section 2.3 (henceforth RD1), whereas in the second case study this superset excludes covariate
and error covariance model based on FF inventory (henceforth RD2). This distinction wasmade to explore the
additional error/uncertainty incurred due to the lack of a detailed inventory, a realistic constraint in many
parts of the world.

3.3. Synthetic Data Case Study

The goal of the synthetic data case study (henceforth SD) was to evaluate the performance of the inver-
sion method when true fluxes are known. Its results provide a two-way indication of the performance of
the proposed method in disaggregating fluxes, that is, (1) through analysis of a posteriori cross covariance
between FF and biospheric fluxes and (2) through comparison of the estimated fluxes with true fluxes (see
section 4). Overall, this case study is similar to the RD2, as FF inventory estimates are not used as candi-
date covariates in Xff or Qff. This is because in this case the synthetic CO2 observations are themselves
generated using inventory data sets, and using this same data set in the inversion would have provided
an unrealistic amount of information about the true fluxes to the inversion. A zero-mean Gaussian white
noise with variances equal to those in the model-data mismatch matrix (R) in RD2 was added to the syn-
thetic CO2 observations. R in SD is fixed to equal that in RD2, whereas the Qff and Qbio covariance para-
meters and covariates are obtained from the procedure described in section 2.4. The quality of
disaggregation is examined by comparing the inferred fluxes with the true fluxes, i.e., CASA-GFED v2 bio-
spheric and Vulcan and ODIAC FF fluxes.

3.4. Framework for Evaluating Case Studies

The Frobenius norm (for description see Golub and Van Loan [2012]) of FF and biospheric a posteriori cross
covariances is computed to check for the quality of the separation of the estimated fluxes. To compute the
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Frobenius norm of cross covariances, the a posteriori covariances are first aggregated temporally to monthly
resolution at grid scale to evaluate the degree to which biospheric and FF fluxes can be isolated at timescales
relevant for understanding carbon budgets.

This monthly covariance is obtained through the law of the sum of the variance of random variables in space
and time and can be written as

V ¼ Vbio V
T
ff ;bio

V ff ;bio V ff

" #
(14)

whereV is a posteriori covariance of the fluxes aggregated to monthly temporal resolution, Vbio and V ff are a
posteriori covariances of the biospheric and FF fluxes at monthly resolution, respectively, and V ff ;bio repre-
sents their cross covariance. The Frobenius norm for V ff ;bio is computed as

V ff ;bio

�� ��
F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trace V

T
ff ;bioV ff ;bio

	 
r
(15)

where ‖ ‖ stands for the norm and all other terms are as defined earlier. A smaller Frobenius norm of V ff ;bio

indicates better separation of the two signals and low a posteriori cross covariance between the disaggre-
gated fluxes.

The model resolution matrix of the estimated FF fluxes at the 8 day temporal resolution was also examined.
The model resolution matrix indicates the quality of estimated fluxes and can be given as

m̂ff ¼ ΛT
ffHff (16)

where m̂ff is the model resolution matrix and all other terms are as described earlier. The quality of the esti-
mated FF fluxes is assessed by computing the ℓ2 norm of m̂ff . A ℓ2 norm of 1 ofm̂ ff indicates that estimated FF
fluxes can be independently determined, whereas a value greater than 1 indicates that only average fluxes
can be determined, with progressively larger ℓ2 norms indicating progressively poor estimation of FF fluxes
(for details see Menke [2013]).

The correlationbetween true andmodeled concentrationwas also examined for the two real data case studies.

4. Results and Discussion

The quantification of fossil fuel emissions from atmospheric observations depends on the availability of an
observational network that is sufficiently sensitive to FF emissions and the methodological framework for iso-
lating the biospheric and FF components of the terrestrial fluxes. An approach for fulfilling the second of
these needs is presented here. This approach is evaluated within four regions of the United States
(Figure 1), because these are the regions for which the observational network in 2008 was relatively more
effective at detecting FF emissions [Shiga et al., 2014].

Figure 1. Regional classification map for aggregating fluxes and a posteriori cross covariances of biospheric and fossil fuel
fluxes.
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For the RD1 case study, the fossil fuel inventory is selected both as the spatial trend of the FF emissions (Xff),
and as the data set used to populate the error covariance matrix (Qff). Intuitively, in the context of the inver-
sion case studies, the choice of a FF trend and error covariance model selected by BIC implies that among all
candidate models it is best suited for (1) describing the variance in the spatial distribution of FF emissions, (2)
identifying the FF signal in the CO2 observations, (3) separating FF and biospheric fluxes, and (4) computing
estimates of FF and biospheric fluxes. The selection of the FF inventory by BIC in the RD1 case is not a surprise,
as this inventory is indeed expected to be more representative of the true FF emissions patterns relative to
the other candidate variables. Moreover, it also shows that covariates of FF emissions with high spatiotem-
poral resolution (e.g., diurnally and seasonally varying) are more representative of the true distribution of
FF fluxes relative to covariates that do not vary in time (e.g., urban areas). Covariates of FF fluxes that typically
vary at daily temporal resolution were included in this study, but they did not have any temporal variability as
we did not have access to these data (e.g., Landscan population density data) or due to nonavailability of data
at this temporal resolution (e.g., night lights).

Results from RD1 confirm that the statistical framework presented here can be used to disaggregate bio-
spheric and FF terrestrial CO2 fluxes when observations are sufficiently sensitive to FF emissions. The success
of the disaggregation of FF and biospheric fluxes in RD1 can be evaluated by examining the a posteriori cross
covariance and cross correlation of uncertainties (Figure 2; also see Table A2) between these component flux
estimates at aggregated spatial (i.e., regional) and temporal (i.e., monthly) scales. The cross covariances are
generally small relative to the magnitude of the fluxes (Figure 2), and the cross correlations are low, except
for the Midwest.

An inversion was also performed for July (results not shown) for all three case studies. This was done to test
our ability to disaggregate FF fluxes from biospheric fluxes in a summer month. We found that both ℓ2 and

Figure 2. Row 1 represents the a posteriori cross covariances (shown here is square root of the absolute value of the cross
covariance V ff;bio

� �
, so that it is comparable to the uncertainty bounds from Figures 3 and 4.) of the FF and biospheric fluxes,

aggregated a posteriori to monthly temporal resolution and regional spatial scale for the three case studies. Row 2 shows
the correlation coefficients of these a posteriori uncertainties. Smaller covariances and correlation coefficients imply better
separation between fossil fuel and biospheric flux estimates.

Table 1. Covariates and Error Covariance Models Selected by BIC for Xff and Qff for the Three Case Studies

Case
Studies

Covariates

FF Covariance Model
Frobenius Norm
(μmolm–2 s–1)2

ℓ2 Norm of Model
Resolution
Matrix

Mean Night
Light

Intensity

Mean
Population
Density

Percent
Built-Up
Area

Percent
Urban
Area

FF
Inventory

RD1 ✓ Mean (FF inventory) 6.92 2.53
RD2 ✓ ✓ N/A Maximum (night lights intensity) 9.69 4.86
SD ✓ ✓ N/A Variance (population density;

per square kilometer)
6.95 3.53
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Frobenius norm for January (equation
(15) and Table 1) was over a factor of
15 times lower than those obtained
for July and fossil fuel emissions were
not detectable by the measurement
network due to the large confounding
influence of the biospheric fluxes (see
also Shiga et al. [2014]). The small
Frobenius norm in January is another
indication of the small cross covar-
iances between the FF and biospheric
flux uncertainties. This is further con-
firmed by the ℓ2 norm of the model
resolution matrix (see equation (16)
and Table 1) and the coefficient of
determination of 0.84 (see Figure A1)
between the true and posteriori fit of
observations obtained by transporting
forward the estimated fluxes for the
month of January 2008.

For the RD2 case study, the fossil fuel
inventory is made unavailable for the

variable selection (for both the trend (Xff) and prior error covariance (Qff) models). This leads to the selection
of mean population density, percent urban land cover (Xff) and the maximum value of night lights intensity
(Qff) as alternatives (Table 1). The impact of using these data sets, which are less directly representative of the
underlying FF emissions, is seen via increased cross covariances (Figure 2) and cross correlations in the monthly
regional posterior uncertainties of the biospheric and FF fluxes in the RD2 case study. The Frobenius norm, ℓ2

norm (Table 1), and correlation between true and posterior fit of observations (Figure A1) as in RD1 is low and
the estimates of total fluxes (Figure 3) show similar uncertainties on the total flux relative to RD1 (Figure 3) but
increased uncertainties on the component contributions from FF and biospheric fluxes.

For the SD case study, the fossil fuel inventory is also made unavailable for the variable selection, as it is used to
create the synthetic observations. The selected alternate covariates are night light intensity and population den-

sity (Xff) and the variance of population
density within each 1° by 1° grid cells
(Qff) (Table 1). These are different from
the ones selected in RD2. This is due to
the differences between the RD and SD
setups, including the nature of the true
FF fluxes and the impact of transport
model errors. The effect of using these
data sets, which are proxies of FF emis-
sions, on the posterior cross covariances
and cross correlations (Figure 2) in the
biospheric and FF uncertainties is similar
to that observed in RD2, though with a

lower Frobenius norm of V ff ;bio relative
to RD2 case study.

For the SD case study, the FF, biospheric,
and total fluxes can also be compared to
their “true” values (Figure 4). Results con-
firm that although the separation of FF
and biospheric flux become more

Figure 3. Estimates of the fossil fuel, biospheric, and total flux with one
standard deviation (first hash mark) and two standard deviation uncer-
tainty bounds for the regions shown in Figure 1 for the two real data case
studies. Diamonds represent RD1; circles represent RD2.

Figure 4. Estimates of fossil fuel, biospheric, and total fluxes with one
standard deviation (first hash mark) and two standard deviation
uncertainty bounds for the regions shown in Figure 1 for the synthetic
data case.
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Table A1. Locations and Measurement Times of CO2 Concentrations Across Study Sites (In Situ Towers)a

Tower Name Latitude Longitude Time of Day (Local Time, h) Height (m) RD1σR (ppm) RD2σR (ppm)

LEF Park Falls 45.95 �90.27 1 4 7 10 13 16 19 22 396 1.49 1.41
WKT Moody 31.32 �97.33 1 4 7 13 16 19 22 457 1.18 1.16
WBI West Branch 41.73 �91.35 1 4 7 10 13 16 19 22 379 1.16 1.13
BAO Boulder Observatory 40.05 �105.01 1 4 7 13 16 19 22 300 1.59 1.59
WGC Walnut Grove 38.27 �121.49 1 4 7 13 16 19 22 483 5.39 5.34
AMT Argyle 45.03 �68.68 13 16 19 107 2.99 2.84
BRW Barrow 71.32 �156.61 1 4 7 10 13 16 19 22 17 0.01 0.09
FRD Fraserdale 49.88 �81.57 13 16 19 40 2.64 0.56
CDL Candle Lake 53.99 �105.12 13 16 19 30 1.56 0.58
SBL Sable Island 43.93 �60.02 1 4 7 10 13 16 19 22 25 1.36 1.36
EGB Egbert 44.23 �79.78 13 3 3.99 4.03
ETL East Trout Lake 54.35 �104.99 10 13 16 19 105 3.35 0.86
LLB Lac LaBiche 54.95 �112.45 13 10 3.03 2.99
CHI Chibougamau 49.69 �74.34 13 16 19 30 0.48 0.47
HFM Harvard Forest 42.54 �72.17 13 16 19 30 3.13 3.20
ARM Southern Great Plains 36.8 �97.5 13 16 19 60 1.26 1.23
MOM Morgan Monroe 39.32 �86.41 13 16 19 48 4.64 4.79
OZA Ozark 38.74 �92.2 13 16 19 30 0.97 0.95
KEW Kewanee 41.28 �89.97 13 16 19 140 1.95 1.88
CEN Centerville 40.79 �92.88 13 16 19 110 0.90 0.91
MEA Mead 41.14 �96.46 13 16 19 122 0.63 0.48
ROL Round Lake 43.53 �95.41 13 16 19 110 1.14 1.04
GAL Galesville 44.09 �91.34 13 16 19 122 2.02 2.03
NWR Niwot Ridge 40.05 �105.58 1 5 2.2 1.21
HDP Hidden Peak Snowbird 40.56 �111.65 1 18 0.82 0.81
FIR Fir 44.65 �123.55 13 16 19 38 3.26 3.22
MET Metolius 44.45 �121.56 13 16 19 34 0.65 0.61
YAH Yaquina Head 44.67 �124.07 13 16 19 13 2.08 2.05
NGB NGBER 43.47 �119.69 13 16 19 7 1.07 1.06

aModified (removed sites with no data in January 2008) from Shiga et al. [2014]; see Table S1 in Shiga et al. [2014]). Note that the variances or model-data mis-
match (σR) are obtained a priori through Restricted Maximum Likelihood, from the method described in section 2.4.

Table A2. Metrics Computed From A Posteriori Covariances for Regions Shown in Figure 1a

RD1 RD2 SD

A Posteriori Correlation Coefficient Between Biospheric and Fossil Fuel Fluxes
Northeast �0.55 �0.56 �0.19
Southeast �0.35 �0.48 �0.19
Midwest �0.58 �0.66 �0.24
South central �0.44 �0.55 �0.16

A Posteriori Cross Covariance Between Biospheric and Fossil Fuel Fluxes (μmol m�2 s�1)2

Northeast �0.012 �0.026 �0.005
Southeast �0.005 �0.017 �0.004
Midwest �0.005 �0.014 �0.005
South central �0.002 �0.006 �0.001

A Posteriori Standard Deviation of Fossil Fuel Fluxes (μmolm�2 s�1)
Northeast 0.132 0.231 0.103
Southeast 0.092 0.176 0.103
Midwest 0.087 0.155 0.092
South central 0.054 0.098 0.044

A Posteriori Standard Deviation of Biospheric Fluxes (μmolm�2 s�1)
Northeast 0.171 0.197 0.240
Southeast 0.166 0.197 0.222
Midwest 0.109 0.136 0.220
South central 0.097 0.115 0.201

aNote that a posteriori cross-correlation coefficients and cross covariances have also been shown in Figure 2.
Correlation coefficients shown in Figure 2 are computed by dividing the a posteriori cross covariances by the product
of a posteriori standard deviations of the biospheric and fossil fuel fluxes.
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uncertain in the absence of a good
inventory, the separation is still rela-
tively robust, in the sense that the true
fluxes lie within the range of the pos-
terior uncertainties. The poorest per-
formance is in the Midwest, which is
also the region with the highest cross
covariance and cross correlation in
the posterior uncertainties. Another
indication of the good overall perfor-

mance of the flux disaggregation is the low RMSE of the 1° by 1° fluxes at the native temporal resolution of
the inversion (3-hourly for biospheric fluxes, 8 day for FF fluxes), namely, 0.33μmolm2 s�1 for FF emissions
and 0.22μmolm2 s�1 for biospheric fluxes, relative to the magnitude of the fluxes (Figure 4).

5. Conclusions

With increasing attention being placed on accurate monitoring of FF emissions, the ability to provide a top-
down verification of inventory-based estimates of FF emissions, by disaggregating FF and biospheric fluxes, is
a promising development. The sparsity of in situ measurement networks, the small relative contribution of FF
flux to the total observed CO2 fluctuations, especially during the growing season and the large model-data
mismatch errors due, in large part, to uncertainties associated with modeling of atmospheric transport
severely limit the ability of inverse models to accurately estimate FF emissions.

Assuming that there is low systematic bias in WRF-STILT transport model, the analyses described in this paper
demonstrate that the proposedmethod is successful in separating FF and biospheric fluxes at subcontinental
scales. This confirms the potential of using a statistical approach, based on the unique spatiotemporal signa-
ture of FF emissions, to isolate and estimate FF emissions using CO2 observations.

Our method performs the disaggregation of biospheric and FF CO2 emissions using error covariance models
and flux covariates (e.g., night lights and population density) that are specific to biospheric and FF fluxes.
These models and covariates are quite different for the two flux components and are fundamental to a suc-
cessful disaggregation. We find that using a FF inventory to construct an error covariance model for FF fluxes
provides a better disaggregation relative to the case when static proxies of FF fluxes are used. This is due to
the better spatiotemporal fidelity that an inventory provides to the FF fluxes being estimated, relative to the
other proxies. The synthetic data case study shows that even in the absence of a detailed FF inventory, other
static FF-related variables can provide sufficient information to adequately disaggregate and estimate FF and
biospheric fluxes.

In both cases, the ability to disaggregate flux components is predicated on the availability of a monitoring
network that is sufficiently sensitive to both types of fluxes. The addition of column-averaged dry air mole
fraction observations [Kuai et al., 2013] from satellites (for list of satellites that measure CO2 see Kulawik
et al. [2013]) and tracers that provide independent information on FF emissions would undoubtedly further
improve the FF emission estimates.

The ability to accurately disaggregate and estimate FF and biospheric fluxes using atmospheric data is a
continuing challenge. This pursuit relies heavily on external conditions including, but not limited, to the
representativeness and density of the observational network as well as transport model accuracy.

Nevertheless, the methodological
advances presented here, specifically
the exploitation of the unique
spatiotemporal structure of FF
emissions, offers an approach to opti-
mally leverage the information con-
tent of available data to provide a
complementary approach for esti-
mating FF fluxes.

Table A3a. Estimates for Qbio Covariance Parameters for Three
Case Studiesa

Case Studies σ (μmolm�2 s�1) ltemporalbio (days) lspatialbio (km)

RD1 5.15 2.69 400
RD2 5.71 3.20 383
SD 0.21 5.28 1204

aNote that only results for the fossil fuel covariance structure that
minimized BIC (see Table 1) are shown. Estimates forQbio covariance para-
meters for three case studies.

Table A3b. Estimates forQff Covariance Parameters for Three Case Studiesa

Case Studies a (μmolm�2 s�1) b (unitless)

RD1 0.02 8.69E�8
RD2 2.33 4.62E�13
SD 1.01E�6 6.0E�3

aNote that only results for the fossil fuel covariance structure that
minimized BIC (see Table 1) are shown. Estimates forQbio covariance para-
meters for three case studies.
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Appendix A

Scatterplot of true and posterior concentration fits for two real data case studies after removing the influence
of inflow of CO2.
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